Uso de Redes Neurais Profundas para Detecção de Vegetação em Contato com Linhas de Distribuição de Energia em Ambientes Urbanos

Dissertação de Mestrado
por Caroline Félix de Oliveira
Publicado: 09/07/2025 - 14:43
Última modificação: 09/07/2025 - 14:43

Linha de pesquisa: Inteligência Artificial

Resumo: Garantir a confiabilidade e a segurança da transmissão de energia elétrica é fundamental para a gestão urbana moderna. Esta pesquisa foca no desenvolvimento de um sistema para detectar o contato entre a vegetação e as linhas de distribuição de energia, utilizando arquiteturas de redes neurais profundas, especialmente versões recentes da família de modelos You Only Look Once (YOLO) e a Real-Time Detection Transformer (RT-DETR). A metodologia incluiu a coleta de dados, rotulagem, pré-processamento de imagens, treinamento do modelo e avaliação de desempenho. Um sistema de mapeamento móvel de baixo custo com câmeras instaladas em veículos terrestres foi utilizado para obter as imagens, que foram posteriormente anotadas para identificar a vegetação em contato com os cabos de distribuição elétrica. Em seguida, diversas técnicas de pré-processamento de imagem, incluindo filtros clássicos de detecção de bordas como Canny, Sobel, Prewitt, entre outros, foram testadas para avaliar seu impacto na qualidade da detecção. Entre as arquiteturas testadas, a YOLOv10m apresentou o melhor desempenho, com F1-score de 89,7% e mAP de 92,7%. O sistema proposto visa aprimorar a detecção de condições perigosas, reduzir os custos operacionais e aumentar a segurança, ao fornecer uma ferramenta confiável para a manutenção preventiva em redes de distribuição de energia. Além disso, o estudo disponibiliza o conjunto de dados rotulado, incentivando pesquisas futuras.

Link para a defesa: https://meet.google.com/ooe-grgf-zfq?pli=1

Banca Examinadora: 
Marcelo Zanchetta do Nascimento - Universidade Federal de Uberlândia, Centro de Ciências Exatas e Tecnologia, Faculdade de Ciências da Computação.
Andrea Gomes Campos - Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e Biológicas, Departamento de Computação.
Data e Horário: 
31/07/2025 - 17:00
Virtual, 2121 1B
Uberlândia, Minas Gerais, Brasil
38400-902
Campus Santa Mônica - Bloco 1B - Sala 230
Complemento: 
1B