Transformer-Based Automatic Weed Segmentation in Multispectral UAV Imagery
Publicado: 21/02/2025 - 08:34
Última modificação: 21/02/2025 - 08:34
Linha de pesquisa: Ciência de Dados
Resumo: O manejo inadequado de plantas daninhas causa perdas anuais significativas à agricultura brasileira, com estimativas que alcançam bilhões de reais. Dada a importância vital da agricultura na economia do Brasil, o manejo eficiente dessas plantas é essencial. Nos últimos anos, os avanços tecnológicos, como o uso de sensores multiespectrais e hiperespectrais acoplados a Veículos Aéreos Não Tripulados (VANTs), aprimoraram as estratégias de manejo de plantas daninhas, possibilitando monitoramento e tomada de decisão precisos. Contudo, o grande desafio no desenvolvimento de sistemas automáticos de manejo de plantas daninhas está em segmentá-las corretamente das culturas. Essa tarefa é intrinsecamente complexa devido a diversos fatores, como a similaridade fenotípica entre culturas e plantas daninhas, oclusões, sombras, variações nas condições climáticas, diferenças nos estágios de crescimento das plantas e inconsistências durante a captura de imagens por VANTs, incluindo borrões de movimento e ruídos. Este trabalho propõe uma nova abordagem de segmentação baseada em vision transformers, utilizando índices de vegetação e espaços de cor alternativos para alcançar uma segmentação precisa de plantas daninhas em diversos cenários e datasets. A metodologia proposta integra informações espectrais, espaciais e contextuais por meio de estratégias de fusão inicial e tardia, aprimorando significativamente a precisão da segmentação. Os resultados experimentais demonstram a superioridade da abordagem em relação ao estado da arte. No conjunto de dados Sugarcane e RedEdge, estratégias de fusão tardia alcançaram um F1-score de 0, 840 e 0, 857 respectivamente. Para o desafiador conjunto de dados Sequoia, a metodologia alcançou um F1-score de 0, 736, destacando sua robustez em cenários agrícolas complexos.
Link da defesa: https://meet.google.com/fbc-hzkg-tud