Abordagem Computacional para Auxiliar a Análise e Classificação de Câncer de Próstata por Meio de Imagens
Publicado: 11/11/2025 - 15:29
Última modificação: 11/11/2025 - 15:29
Linha de pesquisa: Ciência de Dados
Resumo: A análise de imagens histológicas de lâminas inteiras (WSI) no diagnóstico do câncer de próstata impõe desafios computacionais, como o processamento de imagens em gigapixels e a variabilidade morfológica dos tecidos. Este trabalho propõe uma metodologia que integra um pré-processamento baseado em operações morfológicas a uma arquitetura de rede neural convolucional do tipo Mask R-CNN para segmentação de instâncias. Aplicada ao conjunto de dados PANDA, a abordagem incluiu a construção de um banco de dados curado, com geração de patches e balanceamento de classes. O modelo, implementado no framework Detectron2, obteve acurácia de 97,87% na classificação dos padrões de Gleason, confirmando que o pré-processamento direcionado favorece o aprendizado da rede em relação às abordagens end-to-end e foi possível realizar também a validação por meio do subconjunto Karolinska. Os resultados indicam o potencial da metodologia como ferramenta para patologia digital, com capacidade de generalização, estabelecendo um novo referencial para aplicação relacionados aos desafios das imagens médicas
Link para a defesa: https://meet.google.com/ftr-fgwn-jvg